

Home Search Collections Journals About Contact us My IOPscience

Absence of the absolutely continuous spectrum for Stark-Bloch operators with strongly singular periodic potentials

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1998 J. Phys. A: Math. Gen. 31 1115 (http://iopscience.iop.org/0305-4470/31/3/024)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.102 The article was downloaded on 02/06/2010 at 07:08

Please note that terms and conditions apply.

ERRATUM

Absence of the absolutely continuous spectrum for Stark–Bloch operators with strongly singular periodic potentials

Marco Maioli† and Andrea Sacchetti‡

Università di Modena, Dipartimento di Matematica, Via Campi 213/B, I-41100 Modena, Italy

Received 30 July 1997, in final form 30 September 1997

Abstract. We correct here the proof of the boundedness of the coupling term **X** given by us in a previous paper (1995 *J. Phys. A: Math. Gen.* **28** 1101–6).

In [MS] we stated the absence of the absolutely continuous spectrum for Stark–Bloch selfadjoint operators formally defined on $L^2(\mathbb{R}, dx)$ as

$$H_f = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \sum_{j \in \mathbb{Z}} \alpha \delta'(x-j) + fx \qquad f > 0, \ \alpha \neq 0.$$

See [AEL] for the physical interest of this problem and see [E] where a proof of the absence of the absolutely continuous spectrum is given. Recently, [ADE] have proved that the spectrum is purely point for some values of f and α strong enough.

The proof we gave in [MS] contains a technical mistake in lemma 3. Here we correct the proof of lemma 3 [MS] which is based on the incorrect claim $\|\mathbf{X}\|^2 = \max_{m \in \mathbb{N}} \sum_{n \in \mathbb{N}} |X_{n,m}|^2$, just after equation (13) of [MS], where $\|\cdot\|$ denotes the norm

$$\|\mathbf{X}\| := \sup_{\boldsymbol{\xi} \in \ell^2(\mathbb{N}), \boldsymbol{\xi} \neq 0} \frac{\|\boldsymbol{\eta}\|_{\ell^2(\mathbb{N})}}{\|\boldsymbol{\xi}\|_{\ell^2(\mathbb{N})}}$$

where $\xi = (\xi_1, \dots, \xi_n, \dots) \in \ell^2(\mathbb{N})$ and $\eta = \mathbf{X}\xi = (\eta_1, \dots, \eta_m, \dots) \in \ell^2(\mathbb{N})$ is given by $\eta_m = \sum_{n=1}^{\infty} X_{m,n}\xi_n$. In the following [n, MS] denotes the formula (n) of the paper [MS].

The elements $X_{n,m}$ are functions, depending on a real parameter k belonging to the torus $\mathcal{B} = \mathbb{R}/2\pi\mathbb{Z} = [-\pi, \pi)$, given by [12, MS].

We have the following theorem.

Theorem. For any $k \in \mathcal{B}$ the operator $\mathbf{X}(k)$, represented by the matrix $\{X_{n,m}(k)\}_{n,m\in\mathbb{N}}$, is a bounded operator from $\ell^2(\mathbb{N})$ to $\ell^2(\mathbb{N})$. That is there exists a positive constant *C* such that for any $\xi \in \ell^2(\mathbb{N})$

$$\|\mathbf{X}(k)\boldsymbol{\xi}\|_{\ell^2(\mathbb{N})} \leqslant C \|\boldsymbol{\xi}\|_{\ell^2(\mathbb{N})}.$$

The constant C is independent of k.

Proof. As a first step we improve the estimate [13, MS] (we refer to [MS] for the notation).

† E-mail address: maiolim@unimo.it

‡ E-mail address: sacchetti@unimo.it

0305-4470/98/031115+05\$19.50 © 1998 IOP Publishing Ltd

1115

Lemma. We have that $X_{n,m}(k) = x_{n,m} + R^1_{n,m}(k) + R^2_{n,m}(k)$ where

$$x_{n,m} = \begin{cases} \frac{1}{2} & n = m \\ 0 & n + m \text{ even, } n \neq m \\ -\frac{2}{\pi} \left[\frac{\sin((n+m)\pi/2)}{n+m} + \frac{\sin((n-m)\pi/2)}{n-m} \right] & n + m \text{ odd} \end{cases}$$

and

$$R_{n,m}^{1}(k) = \mathcal{O}((n-m)^{-2}) \qquad R_{n,m}^{2}(k) = \mathcal{O}(q^{-1}(n-m)^{-1})$$

as n - m and q go to infinity, $q = \min(n, m)$, and where the asymptotic behaviour is uniform for $k \in \mathcal{B}$.

Proof. Let

$$u_n(x,k) = C_n(k)v_n(x,k)$$

where $C_n := C_n(k) = 1/\sqrt{2} + \mathcal{O}(n^{-1})$ is a normalization constant (see [9, MS] and [10, MS], in the following, for the sake of simplicity, we drop k if not necessary) and (see [7, MS])

$$v_n(x,k) = \begin{cases} e^{-ikx} [e^{iK_n x} - e^{-iK_n x} e^{-iK_n} \tilde{w}_n(k)] & x \in (-\frac{1}{2}, 0) \\ e^{-i(kx+k+K_n)} [e^{iK_n x} - e^{-iK_n x} e^{iK_n} \tilde{w}_n(k)] & x \in (0, \frac{1}{2}) \end{cases}$$

where

$$K_n := K_n(k) = n\pi + \frac{2}{n\pi} (1 - (-1)^n \cos k) + \mathcal{O}(n^{-2})$$
(1)

solves the equation

$$\cos(k) = \cos(K_n) - \frac{1}{2}K_n\sin(K_n)$$
⁽²⁾

and

$$\tilde{w}_n(k) = \frac{e^{ik} - e^{-iK_n}}{1 - e^{i(k - K_n)}} = \frac{\cos(k) - \cos(K_n)}{1 - \cos(k - K_n)} = \frac{\cos(k) - \cos(K_n)}{1 - \cos(k)\cos(K_n) - \sin(k)\sin(K_n)}$$
$$= \frac{-K_n \sin(K_n)/2}{1 - \cos^2(K_n) + K_n \sin(K_n)\cos(K_n)/2 - \sin(k)\sin(K_n)}$$
$$= \frac{-1}{\cos(K_n) + 2[\sin(K_n) - \sin(k)]/K_n} = [-(-1)^n + \mathcal{O}(n^{-1})]$$

since (1) and (2). From this it follows that

$$v_n(x,k) = \begin{cases} e^{-ikx} [2\cos(K_n x) - e^{-iK_n x} r_n^-(k)] & x \in \left(-\frac{1}{2}, 0\right) \\ e^{-i(kx+k+K_n)} [2\cos(K_n x) - e^{-iK_n x} r_n^+(k)] & x \in \left(0, \frac{1}{2}\right) \end{cases}$$

where

$$r_n^{\pm}(k) = (1 + e^{\pm iK_n} \tilde{w}_n(k)) = \mathcal{O}(n^{-1}).$$
 (3)

Let us stress that the same behaviour also holds for the derivative of $r_n^{\pm}(k)$ (denoted by ') because (see [MS])

$$K'_{n}(k) = \frac{2(-1)^{n}\sin(k)}{n\pi} [1 + \mathcal{O}(n^{-1})].$$
(4)

Erratum

Now, we are ready to calculate the coupling term $X_{n,m}(k)$ for $n \neq m$:

. . .

$$X_{n,m}(k) = i \int_{-1/2}^{1/2} \bar{u}_n(x,k) \frac{\partial u_m(x,k)}{\partial k} dx = C_m(k) \bar{C}_n(k) Y_{n,m}(k)$$

where

$$Y_{n,m}(k) = \mathbf{i} \int_{-1/2}^{1/2} \bar{v}_n(x,k) \frac{\partial v_m(x,k)}{\partial k} \,\mathrm{d}x \tag{5}$$

because

$$\bar{C}_n(k)C_m(k)\int_{-1/2}^{1/2}\bar{v}_n(x,k)v_m(x,k)\,\mathrm{d}x = \int_{-1/2}^{1/2}\bar{u}_n(x,k)u_m(x,k)\,\mathrm{d}x = \delta_n^m.$$

From this it follows also that $X_{n,m}(k) = -\bar{X}_{m,n}(k)$. The integral (5) takes the form $Y_{n,m} = Y_{n,m}^1 + Y_{n,m}^2$ where

$$Y_{n,m}^{1}(k) = i \int_{-1/2}^{0} \bar{v}_{n}(x,k) \frac{\partial v_{m}(x,k)}{\partial k} dx$$

= $4 \int_{-1/2}^{0} x \cos(K_{n}x) \cos(K_{m}x) dx + \mathcal{O}(m^{-1}(m-n)^{-1})$

because (1), (3) and (4), and

$$Y_{n,m}^{2}(k) = i \int_{0}^{1/2} \bar{v}_{n}(x,k) \frac{\partial v_{m}(x,k)}{\partial k} dx$$

= $4s \int_{0}^{1/2} (x+1) \cos(K_{n}x) \cos(K_{m}x) dx + \mathcal{O}(m^{-1}(m-n)^{-1})$

where we set

$$s = e^{i(K_n - K_m)} = (-1)^{n-m} [1 + \mathcal{O}((n-m)^{-1})].$$
(6)

Then we have that

$$Y_{n,m}(k) = Z_{n,m}(k) + \mathcal{O}(m^{-1}(m-n)^{-1})$$

where

$$Z_{n,m}(k) = 4 \int_0^{1/2} [s + x(s - 1)] \cos(K_n x) \cos(K_m x) dx$$

= 2[s + (s - 1)/2] $\left[\frac{\sin[(K_n + K_m)/2]}{K_n + K_m} + \frac{\sin[(K_n - K_m)/2]}{K_n - K_m} \right]$
+2(s - 1) $\left[\frac{\cos[(K_n + K_m)/2] - 1}{(K_n + K_m)^2} + \frac{\cos[(K_n - K_m)/2] - 1}{(K_n - K_m)^2} \right].$

From this and from (1) and (6) it follows that $Z_{n,m}(k) = \mathcal{O}((m-n)^{-2})$ when n+m is even and

$$Z_{n,m}(k) = -4 \left[\frac{\sin[(n+m)\pi/2]}{(n+m)\pi} + \frac{\sin[(n-m)\pi/2]}{(n-m)\pi} \right] + \mathcal{O}((m-n)^{-2})$$
(7)

when n + m is odd. Because $C_n(k)\overline{C}_m(k) = \frac{1}{2}[1 + \mathcal{O}(q^{-1})]$, $q = \min(n, m)$, then the statement is proved for $n \neq m$. For n = m we have

$$X_{n,n}(k) = \mathbf{i}|C_n(k)|^2 \int_{-1/2}^{1/2} \bar{v}_n(x,k) \frac{\partial v_n(x,k)}{\partial k} \, \mathrm{d}x + \mathbf{i}\bar{C}_n(k)C_n(k)' \int_{-1/2}^{1/2} |v_n(x,k)|^2 \, \mathrm{d}x$$

where $C_n(k) = 1/\sqrt{2} + O(n^{-1})$ and $C_n(k)' = O(n^{-1})$ (see [9, MS] and [10, MS]) and $i \int_{-1/2}^{1/2} \bar{v}_n(x,k) \frac{\partial v_n(x,k)}{\partial k} dx = 1 + O(n^{-1})$

by using similar arguments used to estimate $Y_{n,m}$. Hence

$$X_{n,n}(k) = \frac{1}{2} + \mathcal{O}(n^{-1}).$$

From the lemma we can write

$$\mathbf{X} = \mathbf{D} + \mathbf{H}^+ + \mathbf{H}^- + \mathbf{T} + \mathbf{R}^1 + \mathbf{R}^2$$
(8)

where **D** = diag($X_{n,n}(k)$),

$$\mathbf{H}^{+} = \{H_{n,m}^{+}\}_{n,m\in\mathbb{N}} \qquad H_{n,m}^{+} = c_{n+m}^{+} \qquad c_{j}^{+} = \begin{cases} 2/j\pi & j = 4\ell + 3, \ell = 0, 1, \dots \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{H}^{1} = \{H_{n,m}^{-}\}_{n,m\in\mathbb{N}} \qquad H_{n,m}^{+} = c_{n+m}^{-} \qquad c_{j}^{-} = \begin{cases} -2/j\pi & j = 4\ell + 1, \ell = 0, 1, \dots \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbf{T} = \{T_{n,m}\}_{n,m\in\mathbb{N}} \qquad T_{n,m} = t_{n-m} \qquad t_{j} = \begin{cases} -(-1)^{\ell}2/j\pi & j = 2\ell + 1, \ell \in \mathbb{Z} \\ 0 & \text{otherwise} \end{cases}$$

and $\mathbf{R}^{j} = \{R_{n,m}^{j}\}_{n,m\in\mathbb{N}}, j = 1, 2$, are remainder terms such that $R_{n,m}^{1}(k) = \mathcal{O}((m-n)^{-2})$ and $R_{n,m}^{2}(k) = \mathcal{O}(q^{-1}(m-n)^{-1})$ for any $k \in [-\pi, \pi]$.

As we shall show later we have that the matrices **D**, **H**⁺, **H**⁻, **T**, **R**¹ and **R**² represent bounded operators from $\ell^2(\mathbb{N})$ to $\ell^2(\mathbb{N})$ for any $k \in [-\pi, \pi]$; so the sum (8) is well defined and it represents a bounded operator from $\ell^2(\mathbb{N})$ to $\ell^2(\mathbb{N})$.

Because

$$\sup_{n} \sum_{m \in \mathbb{N}} |R_{n,m}^{1}| < \infty \qquad \text{and} \qquad \sup_{m} \sum_{n \in \mathbb{N}} |R_{n,m}^{1}| < \infty$$
(9)

then it follows that \mathbb{R}^1 defines a bounded operator from $\ell^1(\mathbb{N})$ to $\ell^1(\mathbb{N})$ (see theorem 2.13 in [M2]) as well as from $\ell^{\infty}(\mathbb{N})$ to $\ell^{\infty}(\mathbb{N})$ (see theorem 2.6 in [M2]). Hence, it defines a bounded operator from $\ell^2(\mathbb{N})$ to $\ell^2(\mathbb{N})$ (see theorem 9, section 7.1 in [M1]). Because

$$\sum_{n,m=1}^{\infty} |R_{n,m}^2(k)|^2 \leq c \sum_{n=1}^{\infty} \left[\sum_{m=1}^{n-1} \frac{1}{m^2(n-m)^2} + \sum_{m=n+1}^{\infty} \frac{1}{(n+1)^2(n-m)^2} \right]$$

for some positive constant c, where

$$\sum_{n=1}^{\infty} \sum_{m=n+1}^{\infty} \frac{1}{(n+1)^2 (n-m)^2} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{(n+1)^2 m^2} < \infty$$

and

$$\sum_{n=1}^{\infty} \sum_{m=1}^{n-1} \frac{1}{m^2 (n-m)^2} = \sum_{m=1}^{\infty} \sum_{n=m+1}^{\infty} \frac{1}{m^2 (n-m)^2} < \infty$$

then it follows that \mathbb{R}^2 defines a bounded operator from $\ell^2(\mathbb{N})$ to $\ell^2(\mathbb{N})$; this is an immediate consequence of the Schwarz inequality (see, e.g. remark 36, p 21, in [H]). The diagonal matrix **D** represents a bounded operator from $\ell^2(\mathbb{N})$ to $\ell^2(\mathbb{N})$ because it differs from $\frac{1}{2}1$, where 1 is the unit matrix, up to a diagonal matrix having terms satisfying (9).

Erratum

The two matrices \mathbf{H}^+ and \mathbf{H}^- are of Hilbert type and so they define bounded operators from $\ell^2(\mathbb{N})$ to $\ell^2(\mathbb{N})$ (see problem 38, p 23 of [H]).

The matrix \mathbf{T} is a Toeplitz matrix given by

$$\mathbf{T} = \begin{pmatrix} 0 & -2/\pi & 0 & 2/3\pi & 0 & -2/5\pi & \dots \\ -2/\pi & 0 & -2/\pi & 0 & 2/3\pi & 0 & \dots \\ 0 & -2/\pi & 0 & -2/\pi & 0 & 2/3\pi & \dots \\ 2/3\pi & 0 & -2/\pi & 0 & -2/\pi & 0 & \dots \\ 0 & 2/3\pi & 0 & -2/\pi & 0 & -2/\pi & \dots \\ -2/5\pi & 0 & 2/3\pi & 0 & -2/\pi & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

The Toeplitz matrix $\mathbf{T} = \{t_{n-m}\}_{n,m\in\mathbb{N}}$ is associated to the function

$$\Phi(z) = \sum_{j \in \mathbb{Z}} t_j z^j \qquad z \in C, \ |z| = 1$$

and the operator represented by **T** and acting from $\ell^2(\mathbb{N})$ to $\ell^2(\mathbb{N})$ is bounded if the function $\Phi(z)$ is essentially bounded on the complex circle of radius 1; in particular, we have that (see corollary 3.2, Ch XXIII in [GGK])

$$\|\mathbf{T}\| = \operatorname{ess}\sup_{\theta \in [0, 2\pi)} |\Phi(e^{i\theta})|.$$

In our case we have that

$$\Phi(e^{i\theta}) = \sum_{j \in \mathbb{Z}} t_j e^{i\theta j} = \sum_{j=1}^{\infty} t_j (e^{i\theta j} + e^{-i\theta j}) = -\frac{4}{\pi} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{2\ell + 1} \cos[(2\ell + 1)\theta] = -p_{\pi/2}(\theta)$$

where $p_{\pi/2}(\theta)$ is the periodic step function which is equal to 1 for $|\theta| < \pi/2$, it is equal to 0 for $\theta = \pm \pi/2$ and it is equal to -1 for $|\theta| \in (\pi/2, \pi]$. Hence, **T** is a bounded operator.

Therefore, we can conclude that **X** is a bounded operator for any k and the constant C in the statement is independent of k because all the asymptotic behaviours are uniform with respect to $k \in \mathcal{B}$.

We thank Professor Joachim Asch of the CPT-CNRS (Marseille) for pointing out the error.

References

- [ADE] Asch J, Duclos P and Exner P 1996 Stark-Wannier Hamiltonians with pure point spectrum Preprint CPT-96/P.3414
- [AEL] Avron J E, Exner P and Last Y 1994 Periodic Schrödinger operators with large gaps and Wannier–Stark ladders Phys. Rev. Lett. 72 896–9
- [E] Exner P 1995 The absence of the absolutely continuous spectrum for δ' Wannier–Stark ladders J. Math. Phys. **36** 4561–70
- [GGK] Gohberg I, Goldberg S and Kaashoek M A 1993 Classes of Linear Operators vol II (Basel: Birkhäuser)
 [H] Halmos P R 1967 A Hilbert Space Problem Book (Van Nostrand: American Book Company)
- [M1] Maddox I J 1970 Elements of Functional Analysis (Cambridge: Cambridge University Press)
- [M2] Maddox I J 1980 Infinite Matrices of Operators (Lecture Notes in Mathematics 768) (Berlin: Springer)
- [MS] Maioli M and Sacchetti A 1995 Absence of the absolutely continuous spectrum for Stark-Bloch operators with strongly singular periodic potentials J. Phys. A: Math. Gen. 28 1101-6