Absence of the absolutely continuous spectrum for Stark-Bloch operators with strongly singular periodic potentials

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1998 J. Phys. A: Math. Gen. 311115
(http://iopscience.iop.org/0305-4470/31/3/024)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.102
The article was downloaded on 02/06/2010 at 07:08

Please note that terms and conditions apply.

ERRATUM

Absence of the absolutely continuous spectrum for Stark-Bloch operators with strongly singular periodic potentials

Marco Maioli \dagger and Andrea Sacchetti \ddagger
Università di Modena, Dipartimento di Matematica, Via Campi 213/B, I-41100 Modena, Italy

Received 30 July 1997, in final form 30 September 1997

Abstract. We correct here the proof of the boundedness of the coupling term \mathbf{X} given by us in a previous paper (1995 J. Phys. A: Math. Gen. 28 1101-6).

In [MS] we stated the absence of the absolutely continuous spectrum for Stark-Bloch selfadjoint operators formally defined on $L^{2}(\mathbb{R}, \mathrm{~d} x)$ as

$$
H_{f}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\sum_{j \in \mathbb{Z}} \alpha \delta^{\prime}(x-j)+f x \quad f>0, \alpha \neq 0
$$

See [AEL] for the physical interest of this problem and see [E] where a proof of the absence of the absolutely continuous spectrum is given. Recently, [ADE] have proved that the spectrum is purely point for some values of f and α strong enough.

The proof we gave in [MS] contains a technical mistake in lemma 3. Here we correct the proof of lemma 3 [MS] which is based on the incorrect claim $\|\mathbf{X}\|^{2}=\max _{m \in \mathbb{N}} \sum_{n \in \mathbb{N}}\left|X_{n, m}\right|^{2}$, just after equation (13) of $[\mathrm{MS}]$, where $\|\cdot\|$ denotes the norm

$$
\|\mathbf{X}\|:=\sup _{\xi \in \ell^{2}(\mathbb{N}), \xi \neq 0} \frac{\|\eta\|_{\ell^{2}(\mathbb{N})}}{\|\xi\|_{\ell^{2}(\mathbb{N})}}
$$

where $\xi=\left(\xi_{1}, \ldots, \xi_{n}, \ldots\right) \in \ell^{2}(\mathbb{N})$ and $\eta=\mathbf{X} \xi=\left(\eta_{1}, \ldots, \eta_{m}, \ldots\right) \in \ell^{2}(\mathbb{N})$ is given by $\eta_{m}=\sum_{n=1}^{\infty} X_{m, n} \xi_{n}$. In the following [n, MS] denotes the formula (n) of the paper [MS].

The elements $X_{n, m}$ are functions, depending on a real parameter k belonging to the torus $\mathcal{B}=\mathbb{R} / 2 \pi \mathbb{Z}=[-\pi, \pi)$, given by [12, MS].

We have the following theorem.

Theorem. For any $k \in \mathcal{B}$ the operator $\mathbf{X}(k)$, represented by the matrix $\left\{X_{n, m}(k)\right\}_{n, m \in \mathbb{N}}$, is a bounded operator from $\ell^{2}(\mathbb{N})$ to $\ell^{2}(\mathbb{N})$. That is there exists a positive constant C such that for any $\xi \in \ell^{2}(\mathbb{N})$

$$
\|\mathbf{X}(k) \xi\|_{\ell^{2}(\mathbb{N})} \leqslant C\|\xi\|_{\ell^{2}(\mathbb{N})}
$$

The constant C is independent of k.
Proof. As a first step we improve the estimate [13, MS] (we refer to [MS] for the notation).

[^0]Lemma. We have that $X_{n, m}(k)=x_{n, m}+R_{n, m}^{1}(k)+R_{n, m}^{2}(k)$ where
$x_{n, m}= \begin{cases}\frac{1}{2} & n=m \\ 0 & n+m \text { even, } n \neq m \\ -\frac{2}{\pi}\left[\frac{\sin ((n+m) \pi / 2)}{n+m}+\frac{\sin ((n-m) \pi / 2)}{n-m}\right] & n+m \text { odd }\end{cases}$
and

$$
R_{n, m}^{1}(k)=\mathcal{O}\left((n-m)^{-2}\right) \quad R_{n, m}^{2}(k)=\mathcal{O}\left(q^{-1}(n-m)^{-1}\right)
$$

as $n-m$ and q go to infinity, $q=\min (n, m)$, and where the asymptotic behaviour is uniform for $k \in \mathcal{B}$.

Proof. Let

$$
u_{n}(x, k)=C_{n}(k) v_{n}(x, k)
$$

where $C_{n}:=C_{n}(k)=1 / \sqrt{2}+\mathcal{O}\left(n^{-1}\right)$ is a normalization constant (see [9, MS] and [10, MS], in the following, for the sake of simplicity, we drop k if not necessary) and (see [7, MS])

$$
v_{n}(x, k)= \begin{cases}\mathrm{e}^{-\mathrm{i} k x}\left[\mathrm{e}^{\mathrm{i} K_{n} x}-\mathrm{e}^{-\mathrm{i} K_{n} x} \mathrm{e}^{-\mathrm{i} K_{n}} \tilde{w}_{n}(k)\right] & x \in\left(-\frac{1}{2}, 0\right) \\ \mathrm{e}^{-\mathrm{i}\left(k x+k+K_{n}\right)}\left[\mathrm{e}^{\mathrm{i} K_{n} x}-\mathrm{e}^{-\mathrm{i} K_{n} x} \mathrm{e}^{\mathrm{i} K_{n}} \tilde{w}_{n}(k)\right] & x \in\left(0, \frac{1}{2}\right)\end{cases}
$$

where

$$
\begin{equation*}
K_{n}:=K_{n}(k)=n \pi+\frac{2}{n \pi}\left(1-(-1)^{n} \cos k\right)+\mathcal{O}\left(n^{-2}\right) \tag{1}
\end{equation*}
$$

solves the equation

$$
\begin{equation*}
\cos (k)=\cos \left(K_{n}\right)-\frac{1}{2} K_{n} \sin \left(K_{n}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{gathered}
\tilde{w}_{n}(k)=\frac{\mathrm{e}^{\mathrm{i} k}-\mathrm{e}^{-\mathrm{i} K_{n}}}{1-\mathrm{e}^{\mathrm{i}\left(k-K_{n}\right)}}=\frac{\cos (k)-\cos \left(K_{n}\right)}{1-\cos \left(k-K_{n}\right)}=\frac{\cos (k)-\cos \left(K_{n}\right)}{1-\cos (k) \cos \left(K_{n}\right)-\sin (k) \sin \left(K_{n}\right)} \\
=\frac{-K_{n} \sin \left(K_{n}\right) / 2}{1-\cos ^{2}\left(K_{n}\right)+K_{n} \sin \left(K_{n}\right) \cos \left(K_{n}\right) / 2-\sin (k) \sin \left(K_{n}\right)} \\
=\frac{-1}{\cos \left(K_{n}\right)+2\left[\sin \left(K_{n}\right)-\sin (k)\right] / K_{n}}=\left[-(-1)^{n}+\mathcal{O}\left(n^{-1}\right)\right]
\end{gathered}
$$

since (1) and (2). From this it follows that

$$
v_{n}(x, k)= \begin{cases}\mathrm{e}^{-\mathrm{i} k x}\left[2 \cos \left(K_{n} x\right)-\mathrm{e}^{-\mathrm{i} K_{n} x} r_{n}^{-}(k)\right] & x \in\left(-\frac{1}{2}, 0\right) \\ \mathrm{e}^{-\mathrm{i}\left(k x+k+K_{n}\right)}\left[2 \cos \left(K_{n} x\right)-\mathrm{e}^{-\mathrm{i} K_{n} x} r_{n}^{+}(k)\right] & x \in\left(0, \frac{1}{2}\right)\end{cases}
$$

where

$$
\begin{equation*}
r_{n}^{ \pm}(k)=\left(1+\mathrm{e}^{ \pm i K_{n}} \tilde{w}_{n}(k)\right)=\mathcal{O}\left(n^{-1}\right) \tag{3}
\end{equation*}
$$

Let us stress that the same behaviour also holds for the derivative of $r_{n}^{ \pm}(k)$ (denoted by ${ }^{\prime}$) because (see [MS])

$$
\begin{equation*}
K_{n}^{\prime}(k)=\frac{2(-1)^{n} \sin (k)}{n \pi}\left[1+\mathcal{O}\left(n^{-1}\right)\right] \tag{4}
\end{equation*}
$$

Now, we are ready to calculate the coupling term $X_{n, m}(k)$ for $n \neq m$:

$$
X_{n, m}(k)=\mathrm{i} \int_{-1 / 2}^{1 / 2} \bar{u}_{n}(x, k) \frac{\partial u_{m}(x, k)}{\partial k} \mathrm{~d} x=C_{m}(k) \bar{C}_{n}(k) Y_{n, m}(k)
$$

where

$$
\begin{equation*}
Y_{n, m}(k)=\mathrm{i} \int_{-1 / 2}^{1 / 2} \bar{v}_{n}(x, k) \frac{\partial v_{m}(x, k)}{\partial k} \mathrm{~d} x \tag{5}
\end{equation*}
$$

because

$$
\bar{C}_{n}(k) C_{m}(k) \int_{-1 / 2}^{1 / 2} \bar{v}_{n}(x, k) v_{m}(x, k) \mathrm{d} x=\int_{-1 / 2}^{1 / 2} \bar{u}_{n}(x, k) u_{m}(x, k) \mathrm{d} x=\delta_{n}^{m}
$$

From this it follows also that $X_{n, m}(k)=-\bar{X}_{m, n}(k)$. The integral (5) takes the form $Y_{n, m}=Y_{n, m}^{1}+Y_{n, m}^{2}$ where

$$
\begin{aligned}
Y_{n, m}^{1}(k)=\mathrm{i} & \int_{-1 / 2}^{0} \bar{v}_{n}(x, k) \frac{\partial v_{m}(x, k)}{\partial k} \mathrm{~d} x \\
& =4 \int_{-1 / 2}^{0} x \cos \left(K_{n} x\right) \cos \left(K_{m} x\right) \mathrm{d} x+\mathcal{O}\left(m^{-1}(m-n)^{-1}\right)
\end{aligned}
$$

because (1), (3) and (4), and

$$
\begin{aligned}
Y_{n, m}^{2}(k)= & \mathrm{i} \int_{0}^{1 / 2} \bar{v}_{n}(x, k) \frac{\partial v_{m}(x, k)}{\partial k} \mathrm{~d} x \\
& =4 s \int_{0}^{1 / 2}(x+1) \cos \left(K_{n} x\right) \cos \left(K_{m} x\right) \mathrm{d} x+\mathcal{O}\left(m^{-1}(m-n)^{-1}\right)
\end{aligned}
$$

where we set

$$
\begin{equation*}
s=\mathrm{e}^{\mathrm{i}\left(K_{n}-K_{m}\right)}=(-1)^{n-m}\left[1+\mathcal{O}\left((n-m)^{-1}\right)\right] \tag{6}
\end{equation*}
$$

Then we have that

$$
Y_{n, m}(k)=Z_{n, m}(k)+\mathcal{O}\left(m^{-1}(m-n)^{-1}\right)
$$

where

$$
\begin{aligned}
Z_{n, m}(k)=4 & \int_{0}^{1 / 2}[s+x(s-1)] \cos \left(K_{n} x\right) \cos \left(K_{m} x\right) \mathrm{d} x \\
= & 2[s+(s-1) / 2]\left[\frac{\sin \left[\left(K_{n}+K_{m}\right) / 2\right]}{K_{n}+K_{m}}+\frac{\sin \left[\left(K_{n}-K_{m}\right) / 2\right]}{K_{n}-K_{m}}\right] \\
& +2(s-1)\left[\frac{\cos \left[\left(K_{n}+K_{m}\right) / 2\right]-1}{\left(K_{n}+K_{m}\right)^{2}}+\frac{\cos \left[\left(K_{n}-K_{m}\right) / 2\right]-1}{\left(K_{n}-K_{m}\right)^{2}}\right] .
\end{aligned}
$$

From this and from (1) and (6) it follows that $Z_{n, m}(k)=\mathcal{O}\left((m-n)^{-2}\right)$ when $n+m$ is even and
$Z_{n, m}(k)=-4\left[\frac{\sin [(n+m) \pi / 2]}{(n+m) \pi}+\frac{\sin [(n-m) \pi / 2]}{(n-m) \pi}\right]+\mathcal{O}\left((m-n)^{-2}\right)$
when $n+m$ is odd. Because $C_{n}(k) \bar{C}_{m}(k)=\frac{1}{2}\left[1+\mathcal{O}\left(q^{-1}\right)\right], q=\min (n, m)$, then the statement is proved for $n \neq m$. For $n=m$ we have
$X_{n, n}(k)=\mathrm{i}\left|C_{n}(k)\right|^{2} \int_{-1 / 2}^{1 / 2} \bar{v}_{n}(x, k) \frac{\partial v_{n}(x, k)}{\partial k} \mathrm{~d} x+\mathrm{i} \bar{C}_{n}(k) C_{n}(k)^{\prime} \int_{-1 / 2}^{1 / 2}\left|v_{n}(x, k)\right|^{2} \mathrm{~d} x$
where $C_{n}(k)=1 / \sqrt{2}+\mathcal{O}\left(n^{-1}\right)$ and $C_{n}(k)^{\prime}=\mathcal{O}\left(n^{-1}\right)$ (see [9, MS] and [10, MS]) and

$$
\mathrm{i} \int_{-1 / 2}^{1 / 2} \bar{v}_{n}(x, k) \frac{\partial v_{n}(x, k)}{\partial k} \mathrm{~d} x=1+\mathcal{O}\left(n^{-1}\right)
$$

by using similar arguments used to estimate $Y_{n, m}$. Hence

$$
X_{n, n}(k)=\frac{1}{2}+\mathcal{O}\left(n^{-1}\right)
$$

From the lemma we can write

$$
\begin{equation*}
\mathbf{X}=\mathbf{D}+\mathbf{H}^{+}+\mathbf{H}^{-}+\mathbf{T}+\mathbf{R}^{1}+\mathbf{R}^{2} \tag{8}
\end{equation*}
$$

where $\mathbf{D}=\operatorname{diag}\left(X_{n, n}(k)\right)$,

$$
\begin{array}{ll}
\mathbf{H}^{+}=\left\{H_{n, m}^{+}\right\}_{n, m \in \mathbb{N}} & H_{n, m}^{+}=c_{n+m}^{+}
\end{array} \quad c_{j}^{+}=\left\{\begin{array}{ll}
2 / j \pi & j=4 \ell+3, \ell=0,1, \ldots \\
0 & \text { otherwise }
\end{array}\right\} \begin{aligned}
& \mathbf{H}^{1}=\left\{H_{n, m}^{-}\right\}_{n, m \in \mathbb{N}}
\end{aligned} H_{n, m}^{+}=c_{n+m}^{-} \quad c_{j}^{-}=\left\{\begin{array}{ll}
-2 / j \pi & j=4 \ell+1, \ell=0,1, \ldots \\
0 & \text { otherwise }
\end{array}\right\} \begin{aligned}
& \mathbf{T}=\left\{T_{n, m}\right\}_{n, m \in \mathbb{N}}
\end{aligned} T_{n, m}=t_{n-m} \quad t_{j}= \begin{cases}-(-1)^{\ell} 2 / j \pi & j=2 \ell+1, \ell \in \mathbb{Z} \\
0 & \text { otherwise }\end{cases}
$$

and $\mathbf{R}^{j}=\left\{R_{n, m}^{j}\right\}_{n, m \in \mathbb{N}}, j=1,2$, are remainder terms such that $R_{n, m}^{1}(k)=\mathcal{O}\left((m-n)^{-2}\right)$ and $R_{n, m}^{2}(k)=\mathcal{O}\left(q^{-1}(m-n)^{-1}\right)$ for any $k \in[-\pi, \pi]$.

As we shall show later we have that the matrices $\mathbf{D}, \mathbf{H}^{+}, \mathbf{H}^{-}, \mathbf{T}, \mathbf{R}^{1}$ and \mathbf{R}^{2} represent bounded operators from $\ell^{2}(\mathbb{N})$ to $\ell^{2}(\mathbb{N})$ for any $k \in[-\pi, \pi]$; so the sum (8) is well defined and it represents a bounded operator from $\ell^{2}(\mathbb{N})$ to $\ell^{2}(\mathbb{N})$.

Because

$$
\begin{equation*}
\sup _{n} \sum_{m \in \mathbb{N}}\left|R_{n, m}^{1}\right|<\infty \quad \text { and } \quad \sup _{m} \sum_{n \in \mathbb{N}}\left|R_{n, m}^{1}\right|<\infty \tag{9}
\end{equation*}
$$

then it follows that \mathbf{R}^{1} defines a bounded operator from $\ell^{1}(\mathbb{N})$ to $\ell^{1}(\mathbb{N})$ (see theorem 2.13 in [M2]) as well as from $\ell^{\infty}(\mathbb{N})$ to $\ell^{\infty}(\mathbb{N})$ (see theorem 2.6 in [M2]). Hence, it defines a bounded operator from $\ell^{2}(\mathbb{N})$ to $\ell^{2}(\mathbb{N})$ (see theorem 9, section 7.1 in [M1]). Because

$$
\sum_{n, m=1}^{\infty}\left|R_{n, m}^{2}(k)\right|^{2} \leqslant c \sum_{n=1}^{\infty}\left[\sum_{m=1}^{n-1} \frac{1}{m^{2}(n-m)^{2}}+\sum_{m=n+1}^{\infty} \frac{1}{(n+1)^{2}(n-m)^{2}}\right]
$$

for some positive constant c, where

$$
\sum_{n=1}^{\infty} \sum_{m=n+1}^{\infty} \frac{1}{(n+1)^{2}(n-m)^{2}}=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{(n+1)^{2} m^{2}}<\infty
$$

and

$$
\sum_{n=1}^{\infty} \sum_{m=1}^{n-1} \frac{1}{m^{2}(n-m)^{2}}=\sum_{m=1}^{\infty} \sum_{n=m+1}^{\infty} \frac{1}{m^{2}(n-m)^{2}}<\infty
$$

then it follows that \mathbf{R}^{2} defines a bounded operator from $\ell^{2}(\mathbb{N})$ to $\ell^{2}(\mathbb{N})$; this is an immediate consequence of the Schwarz inequality (see, e.g. remark 36, p 21, in [H]). The diagonal matrix \mathbf{D} represents a bounded operator from $\ell^{2}(\mathbb{N})$ to $\ell^{2}(\mathbb{N})$ because it differs from $\frac{1}{2} 1$, where 1 is the unit matrix, up to a diagonal matrix having terms satisfying (9).

The two matrices \mathbf{H}^{+}and \mathbf{H}^{-}are of Hilbert type and so they define bounded operators from $\ell^{2}(\mathbb{N})$ to $\ell^{2}(\mathbb{N})$ (see problem 38 , p 23 of $[\mathrm{H}]$).

The matrix \mathbf{T} is a Toeplitz matrix given by

$$
\mathbf{T}=\left(\begin{array}{ccccccc}
0 & -2 / \pi & 0 & 2 / 3 \pi & 0 & -2 / 5 \pi & \cdots \\
-2 / \pi & 0 & -2 / \pi & 0 & 2 / 3 \pi & 0 & \cdots \\
0 & -2 / \pi & 0 & -2 / \pi & 0 & 2 / 3 \pi & \cdots \\
2 / 3 \pi & 0 & -2 / \pi & 0 & -2 / \pi & 0 & \cdots \\
0 & 2 / 3 \pi & 0 & -2 / \pi & 0 & -2 / \pi & \cdots \\
-2 / 5 \pi & 0 & 2 / 3 \pi & 0 & -2 / \pi & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots .
\end{array}\right) .
$$

The Toeplitz matrix $\mathbf{T}=\left\{t_{n-m}\right\}_{n, m \in \mathbb{N}}$ is associated to the function

$$
\Phi(z)=\sum_{j \in \mathbb{Z}} t_{j} z^{j} \quad z \in C,|z|=1
$$

and the operator represented by \mathbf{T} and acting from $\ell^{2}(\mathbb{N})$ to $\ell^{2}(\mathbb{N})$ is bounded if the function $\Phi(z)$ is essentially bounded on the complex circle of radius 1 ; in particular, we have that (see corollary 3.2, Ch XXIII in [GGK])

$$
\|\mathbf{T}\|=\operatorname{ess} \sup _{\theta \in[0,2 \pi)}\left|\Phi\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| .
$$

In our case we have that
$\Phi\left(\mathrm{e}^{\mathrm{i} \theta}\right)=\sum_{j \in \mathbb{Z}} t_{j} \mathrm{e}^{\mathrm{i} \theta j}=\sum_{j=1}^{\infty} t_{j}\left(\mathrm{e}^{\mathrm{i} \theta j}+\mathrm{e}^{-\mathrm{i} \theta j}\right)=-\frac{4}{\pi} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell}}{2 \ell+1} \cos [(2 \ell+1) \theta]=-p_{\pi / 2}(\theta)$
where $p_{\pi / 2}(\theta)$ is the periodic step function which is equal to 1 for $|\theta|<\pi / 2$, it is equal to 0 for $\theta= \pm \pi / 2$ and it is equal to -1 for $|\theta| \in(\pi / 2, \pi]$. Hence, \mathbf{T} is a bounded operator.

Therefore, we can conclude that \mathbf{X} is a bounded operator for any k and the constant C in the statement is independent of k because all the asymptotic behaviours are uniform with respect to $k \in \mathcal{B}$.

We thank Professor Joachim Asch of the CPT-CNRS (Marseille) for pointing out the error.

References

[ADE] Asch J, Duclos P and Exner P 1996 Stark-Wannier Hamiltonians with pure point spectrum Preprint CPT-96/P. 3414
[AEL] Avron J E, Exner P and Last Y 1994 Periodic Schrödinger operators with large gaps and Wannier-Stark ladders Phys. Rev. Lett. 72 896-9
[E] Exner P 1995 The absence of the absolutely continuous spectrum for δ^{\prime} Wannier-Stark ladders J. Math. Phys. 36 4561-70
[GGK] Gohberg I, Goldberg S and Kaashoek M A 1993 Classes of Linear Operators vol II (Basel: Birkhäuser)
[H] Halmos P R 1967 A Hilbert Space Problem Book (Van Nostrand: American Book Company)
[M1] Maddox I J 1970 Elements of Functional Analysis (Cambridge: Cambridge University Press)
[M2] Maddox I J 1980 Infinite Matrices of Operators (Lecture Notes in Mathematics 768) (Berlin: Springer)
[MS] Maioli M and Sacchetti A 1995 Absence of the absolutely continuous spectrum for Stark-Bloch operators with strongly singular periodic potentials J. Phys. A: Math. Gen. 28 1101-6

[^0]: \dagger E-mail address: maiolim@unimo.it
 \ddagger E-mail address: sacchetti@unimo.it

