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ERRATUM

Absence of the absolutely continuous spectrum for
Stark–Bloch operators with strongly singular periodic
potentials

Marco Maioli† and Andrea Sacchetti‡
Universit̀a di Modena, Dipartimento di Matematica, Via Campi 213/B, I–41100 Modena, Italy

Received 30 July 1997, in final form 30 September 1997

Abstract. We correct here the proof of the boundedness of the coupling termX given by us
in a previous paper (1995J. Phys. A: Math. Gen.28 1101–6).

In [MS] we stated the absence of the absolutely continuous spectrum for Stark–Bloch self-
adjoint operators formally defined onL2(R, dx) as

Hf = − d2

dx2
+
∑
j∈Z

αδ′(x − j)+ f x f > 0, α 6= 0.

See [AEL] for the physical interest of this problem and see [E] where a proof of the
absence of the absolutely continuous spectrum is given. Recently, [ADE] have proved that
the spectrum is purely point for some values off andα strong enough.

The proof we gave in [MS] contains a technical mistake in lemma 3. Here we correct the
proof of lemma 3 [MS] which is based on the incorrect claim‖X‖2 = maxm∈N

∑
n∈N |Xn,m|2,

just after equation (13) of [MS], where‖ · ‖ denotes the norm

‖X‖ := sup
ξ∈`2(N),ξ 6=0

‖η‖`2(N)

‖ξ‖`2(N)

whereξ = (ξ1, . . . , ξn, . . .) ∈ `2(N) andη = Xξ = (η1, . . . , ηm, . . .) ∈ `2(N) is given by
ηm =

∑∞
n=1Xm,nξn. In the following [n,MS] denotes the formula(n) of the paper [MS].

The elementsXn,m are functions, depending on a real parameterk belonging to the torus
B = R/2πZ = [−π, π), given by [12, MS].

We have the following theorem.

Theorem. For anyk ∈ B the operatorX(k), represented by the matrix{Xn,m(k)}n,m∈N, is a
bounded operator from̀2(N) to `2(N). That is there exists a positive constantC such that
for any ξ ∈ `2(N)

‖X(k)ξ‖`2(N) 6 C‖ξ‖`2(N).

The constantC is independent ofk.

Proof. As a first step we improve the estimate [13, MS] (we refer to [MS] for the notation).
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Lemma. We have thatXn,m(k) = xn,m + R1
n,m(k)+ R2

n,m(k) where

xn,m =



1

2
n = m

0 n+m even,n 6= m

− 2

π

[
sin((n+m)π/2)

n+m + sin((n−m)π/2)
n−m

]
n+m odd

and

R1
n,m(k) = O((n−m)−2) R2

n,m(k) = O(q−1(n−m)−1)

as n − m and q go to infinity, q = min(n,m), and where the asymptotic behaviour is
uniform for k ∈ B.

Proof. Let

un(x, k) = Cn(k)vn(x, k)
whereCn := Cn(k) = 1/

√
2+O(n−1) is a normalization constant (see [9, MS] and [10, MS],

in the following, for the sake of simplicity, we dropk if not necessary) and (see [7, MS])

vn(x, k) =
{

e−ikx [eiKnx − e−iKnx e−iKnw̃n(k)] x ∈ (− 1
2, 0

)
e−i(kx+k+Kn)[eiKnx − e−iKnx eiKnw̃n(k)] x ∈ (0, 1

2

)
where

Kn := Kn(k) = nπ + 2

nπ
(1− (−1)n cosk)+O(n−2) (1)

solves the equation

cos(k) = cos(Kn)− 1
2Kn sin(Kn) (2)

and

w̃n(k) = eik − e−iKn

1− ei(k−Kn) =
cos(k)− cos(Kn)

1− cos(k −Kn) =
cos(k)− cos(Kn)

1− cos(k) cos(Kn)− sin(k) sin(Kn)

= −Kn sin(Kn)/2

1− cos2(Kn)+Kn sin(Kn) cos(Kn)/2− sin(k) sin(Kn)

= −1

cos(Kn)+ 2[sin(Kn)− sin(k)]/Kn
= [−(−1)n +O(n−1)]

since (1) and (2). From this it follows that

vn(x, k) =
{

e−ikx [2 cos(Knx)− e−iKnxr−n (k)] x ∈ (− 1
2, 0

)
e−i(kx+k+Kn)[2 cos(Knx)− e−iKnxr+n (k)] x ∈ (0, 1

2

)
where

r±n (k) = (1+ e±iKnw̃n(k)) = O(n−1). (3)

Let us stress that the same behaviour also holds for the derivative ofr±n (k) (denoted by′)
because (see [MS])

K ′n(k) =
2(−1)n sin(k)

nπ
[1+O(n−1)]. (4)
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Now, we are ready to calculate the coupling termXn,m(k) for n 6= m:

Xn,m(k) = i
∫ 1/2

−1/2
ūn(x, k)

∂um(x, k)

∂k
dx = Cm(k)C̄n(k)Yn,m(k)

where

Yn,m(k) = i
∫ 1/2

−1/2
v̄n(x, k)

∂vm(x, k)

∂k
dx (5)

because

C̄n(k)Cm(k)

∫ 1/2

−1/2
v̄n(x, k)vm(x, k)dx =

∫ 1/2

−1/2
ūn(x, k)um(x, k)dx = δmn .

From this it follows also thatXn,m(k) = −X̄m,n(k). The integral (5) takes the form
Yn,m = Y 1

n,m + Y 2
n,m where

Y 1
n,m(k) = i

∫ 0

−1/2
v̄n(x, k)

∂vm(x, k)

∂k
dx

= 4
∫ 0

−1/2
x cos(Knx) cos(Kmx) dx +O(m−1(m− n)−1)

because (1), (3) and (4), and

Y 2
n,m(k) = i

∫ 1/2

0
v̄n(x, k)

∂vm(x, k)

∂k
dx

= 4s
∫ 1/2

0
(x + 1) cos(Knx) cos(Kmx) dx +O(m−1(m− n)−1)

where we set

s = ei(Kn−Km) = (−1)n−m[1+O((n−m)−1)]. (6)

Then we have that

Yn,m(k) = Zn,m(k)+O(m−1(m− n)−1)

where

Zn,m(k) = 4
∫ 1/2

0
[s + x(s − 1)] cos(Knx) cos(Kmx) dx

= 2[s + (s − 1)/2]

[
sin[(Kn +Km)/2]

Kn +Km + sin[(Kn −Km)/2]

Kn −Km

]
+2(s − 1)

[
cos[(Kn +Km)/2]− 1

(Kn +Km)2 + cos[(Kn −Km)/2]− 1

(Kn −Km)2
]
.

From this and from (1) and (6) it follows thatZn,m(k) = O((m−n)−2) whenn+m is even
and

Zn,m(k) = −4

[
sin[(n+m)π/2]

(n+m)π + sin[(n−m)π/2]

(n−m)π
]
+O((m− n)−2) (7)

when n + m is odd. BecauseCn(k)C̄m(k) = 1
2[1 + O(q−1)], q = min(n,m), then the

statement is proved forn 6= m. For n = m we have

Xn,n(k) = i|Cn(k)|2
∫ 1/2

−1/2
v̄n(x, k)

∂vn(x, k)

∂k
dx + iC̄n(k)Cn(k)

′
∫ 1/2

−1/2
|vn(x, k)|2 dx
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whereCn(k) = 1/
√

2+O(n−1) andCn(k)′ = O(n−1) (see [9, MS] and [10, MS]) and

i
∫ 1/2

−1/2
v̄n(x, k)

∂vn(x, k)

∂k
dx = 1+O(n−1)

by using similar arguments used to estimateYn,m. Hence

Xn,n(k) = 1
2 +O(n−1).

�

From the lemma we can write

X = D+ H+ + H− + T+ R1+ R2 (8)

whereD = diag(Xn,n(k)),

H+ = {H+n,m}n,m∈N H+n,m = c+n+m c+j =
{

2/jπ j = 4`+ 3, ` = 0, 1, . . .

0 otherwise

H1 = {H−n,m}n,m∈N H+n,m = c−n+m c−j =
{
−2/jπ j = 4`+ 1, ` = 0, 1, . . .

0 otherwise

T = {Tn,m}n,m∈N Tn,m = tn−m tj =
{
−(−1)`2/jπ j = 2`+ 1, ` ∈ Z
0 otherwise

and Rj = {Rjn,m}n,m∈N, j = 1, 2, are remainder terms such thatR1
n,m(k) = O((m − n)−2)

andR2
n,m(k) = O(q−1(m− n)−1) for any k ∈ [−π, π ].

As we shall show later we have that the matricesD, H+, H−, T, R1 and R2 represent
bounded operators from̀2(N) to `2(N) for anyk ∈ [−π, π ]; so the sum (8) is well defined
and it represents a bounded operator from`2(N) to `2(N).

Because

sup
n

∑
m∈N
|R1

n,m| <∞ and sup
m

∑
n∈N
|R1

n,m| <∞ (9)

then it follows thatR1 defines a bounded operator from̀1(N) to `1(N) (see theorem 2.13
in [M2]) as well as from`∞(N) to `∞(N) (see theorem 2.6 in [M2]). Hence, it defines a
bounded operator from̀2(N) to `2(N) (see theorem 9, section 7.1 in [M1]). Because

∞∑
n,m=1

|R2
n,m(k)|2 6 c

∞∑
n=1

[ n−1∑
m=1

1

m2(n−m)2 +
∞∑

m=n+1

1

(n+ 1)2(n−m)2
]

for some positive constantc, where
∞∑
n=1

∞∑
m=n+1

1

(n+ 1)2(n−m)2 =
∞∑
n=1

∞∑
m=1

1

(n+ 1)2m2
<∞

and
∞∑
n=1

n−1∑
m=1

1

m2(n−m)2 =
∞∑
m=1

∞∑
n=m+1

1

m2(n−m)2 <∞

then it follows thatR2 defines a bounded operator from̀2(N) to `2(N); this is an immediate
consequence of the Schwarz inequality (see, e.g. remark 36, p 21, in [H]). The diagonal
matrix D represents a bounded operator from`2(N) to `2(N) because it differs from1

21,
where 1 is the unit matrix, up to a diagonal matrix having terms satisfying (9).
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The two matricesH+ andH− are of Hilbert type and so they define bounded operators
from `2(N) to `2(N) (see problem 38, p 23 of [H]).

The matrixT is a Toeplitz matrix given by

T =



0 −2/π 0 2/3π 0 −2/5π . . .

−2/π 0 −2/π 0 2/3π 0 . . .

0 −2/π 0 −2/π 0 2/3π . . .

2/3π 0 −2/π 0 −2/π 0 . . .

0 2/3π 0 −2/π 0 −2/π . . .

−2/5π 0 2/3π 0 −2/π 0 . . .
...

...
...

...
...

...
. . .


.

The Toeplitz matrixT = {tn−m}n,m∈N is associated to the function

8(z) =
∑
j∈Z

tj z
j z ∈ C, |z| = 1

and the operator represented byT and acting from̀ 2(N) to `2(N) is bounded if the function
8(z) is essentially bounded on the complex circle of radius 1; in particular, we have that
(see corollary 3.2, Ch XXIII in [GGK])

‖T‖ = ess sup
θ∈[0,2π)

|8(eiθ )|.

In our case we have that

8(eiθ ) =
∑
j∈Z

tj eiθj =
∞∑
j=1

tj (e
iθj + e−iθj ) = − 4

π

∞∑
`=0

(−1)`

2`+ 1
cos[(2`+ 1)θ ] = −pπ/2(θ)

wherepπ/2(θ) is the periodic step function which is equal to 1 for|θ | < π/2, it is equal to
0 for θ = ±π/2 and it is equal to−1 for |θ | ∈ (π/2, π ]. Hence,T is a bounded operator.

Therefore, we can conclude thatX is a bounded operator for anyk and the constantC
in the statement is independent ofk because all the asymptotic behaviours are uniform with
respect tok ∈ B. �

We thank Professor Joachim Asch of the CPT-CNRS (Marseille) for pointing out the error.
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