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ERRATUM

Absence of the absolutely continuous spectrum for
Stark—Bloch operators with strongly singular periodic
potentials

Marco Maiolit and Andrea Sacchetti
Universit di Modena, Dipartimento di Matematica, Via Campi 213/B, 1-41100 Modena, Italy

Received 30 July 1997, in final form 30 September 1997

Abstract. We correct here the proof of the boundedness of the coupling Xegiven by us
in a previous paper (1995 Phys. A: Math. Gen28 1101-6).

In [MS] we stated the absence of the absolutely continuous spectrum for Stark—Bloch self-
adjoint operators formally defined di?(R, dx) as
d2

Hr="ge

+ Y b (x = j)+ fx f>0, a#0.
JEZ

See [AEL] for the physical interest of this problem and see [E] where a proof of the
absence of the absolutely continuous spectrum is given. Recently, [ADE] have proved that
the spectrum is purely point for some valuesfofinda strong enough.

The proof we gave in [MS] contains a technical mistake in lemma 3. Here we correct the
proof of lemma 3 [MS] which is based on the incorrect cldid|? = max,cx Y oneN | X%
just after equation (13) of [MS], wherig- || denotes the norm

171l e2av)

IX]| = sup
geezy), g0 1€ ey

whereé = (&1,...,&,,...) e 2(N) andn = XE = (91, ..., W, ...) € £2(N) is given by
Mm = peq Xma&n. In the following [z, MS] denotes the formulé:) of the paper [MS].
The elements,, ,, are functions, depending on a real paraméteelonging to the torus
B=R/2r7Z = [—n, ), given by [12, MS].
We have the following theorem.

Theorem For anyk € B the operatoX(k), represented by the matr{X,, ,, (k) },.men, IS @
bounded operator fro?(N) to ¢2(N). That is there exists a positive constahsuch that
for any & € £2(N)

IXK)E ey < ClIE o2y
The constanC is independent of.

Proof. As a first step we improve the estimate [13, MS] (we refer to [MS] for the notation).
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Lemma We have thatX, , (k) = x,.m + R}, (k) + RZ , (k) where

1 j—
2 -
o 1o n+mevenn#m
2 . 1 J—
2 [sm((n +m)m/2) + sin((n m)”/z)} n 4+ m odd
T n-+m n—m
and

RY (k) = O((n —m)™? RZ,(k)=0(q "n—m)™

n,m

asn —m and g go to infinity, ¢ = min(n, m), and where the asymptotic behaviour is
uniform for k € B.

Proof Let

Mn(xa k) = Cn(k)vn(-xv k)

whereC, = C, (k) = 1/+/2+0O(nY) is a normalization constant (see [9, MS] and [10, MS],
in the following, for the sake of simplicity, we drapif not necessary) and (see [7, MS])

efikx [eiK,lx _ efiK,,x e*iKn ﬁ)n (k)] X e (_%’ 0)
U6 K) =0 kK raik CiKnx K 1
g krtkt K@l Knr _ eiKux @iy (k)] xe(0d)
where
2
K, := K,(k) = nw + — (1 — (—=1)" cosk) + O(n~?) (1)
nmw
solves the equation
cosk) = cosK,) — 3K, Sin(K,) )
and
5 = ek —e'®  cogk) —cogK,) cogk) — cogK,,)
Wl = kK T 1 - cosk — K,) 11— cogk)cosK,) — sintk)sin(K,)
—K,sin(K,)/2

- 1-co2(K,) + K, sin(K,) cogK,)/2 — sin(k) sin(K,,)
_ -1 . .
 cogK,) + 2[sin(K,) — sin(k)]/K, =[-=D"+ 0]

since (1) and (2). From this it follows that

e "2 cog K, x) — e v (k)] xe (=10
U (x, k) = . )
g kKD [2 cog K, x) — €7 K (k)] x€(0,3)
where
rE(k) = (1+ "%, (k) = Om™). ®)

Let us stress that the same behaviour also holds for the derivatixve(bf (denoted by)
because (see [MS])

14+ 0@ 4

K (k) = 2(—1’)1"7Tsin(k)
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Now, we are ready to calculate the coupling tekm,, (k) for n # m:

1/2
Xym(k) = i f i e, b 2K 4 R R Y ()

1/2 ok
where
12 3 k
Yo (k) =i / a0, b Lm0 g, ®)
12 dk
because
_ 1/2 1/2
Cn(k)Cm(k)/ U, (x, k)v, (x, k) dx =/ i (2, k)t (x, k) dx = 8.
-1/2 —1/2
From this it follows also thatX, ,, (k) = —)_(m,n(k). The integral (5) takes the form

Yom =Yy, + Y2, where

0
Ynlm(k) :i/ 5,1(x,k)wdx
’ _172 ok

0
= 4f x 0K, x) coSK,,x) dx + O(m™*(m —n)™)

1/2
because (1), (3) and (4), and
1/2
Y,im(k)zi/ 5o ) 2B g
0

ok
1/2
=4s [ (x + 1) cog K, x) cogK,,x) dx + O(m~(m —n)™1)
0

where we set

s = &K — (11 + O((n — m)™Y)]. (6)
Then we have that

Yom(k) = Zy (k) + O(m ™ (m —n)™h)

where

1/2
Zym(k) = 4/ [s +x(s — D] cos(K,x) cog K,,x) dx
0

= 2[s + (s — 1)/2] [Si”[(K" +Kn)/2] | sinl(K, — Km>/2]}

Kn + Km Ki’l - Km
COS[(Kn + Km)/z] -1 COS[(Kn - Km)/z] -1
D [ (Ko + Kn)? (K — Ko }

From this and from (1) and (6) it follows that, ,, (k) = O((m —n)~2) whenn +m is even
and

Zy k) = —4 [sin[(n +m)/2]  sin[(n —m)m/2]

(n+m)m (n —m)mw

} +O((m — n)~?) 7

whenn + m is odd. Because&, (k)C,, (k) = %[1 + O(g™H], ¢ = min(n, m), then the
statement is proved for £ m. Forn = m we have

12 v, (x, k)

_ 1/2
Xn(k) = i|cn<k>|2/ D (x, k)72 dx + icn(k>cn<k)// v, (x, k)[2 dx
2 ok ~1/2
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whereC, (k) = 1/+/24+ O™ andC, (k) = O(n~Y) (see [9, MS] and [10, MS]) and

1/2
i / B (x k)w =14+0mn?
-1/2 dk

by using similar arguments used to estim#tg,. Hence
X, (k) = 3 +00™Y.

From the lemma we can write
X=D+H +H +T+R'+R? (8)
whereD = diag(X,, ,(k)),

={H' } H —oF ot = 2/jm j=4+3¢6=01,...
n,mIn,meN n,m n+m J 0 otherwise
m 1_17L = c. c. = .
={H, ,}nmen nm = Cntm i { 0 otherwise

T= {Zl,m}n,mEN Tn,m =In—m I

| -D2n j=2+1,¢teZ
~]o otherwise

andR’ = {Rj w}umen, j = 1,2, are remainder terms such tha} (k) = O((m — n)~?)
and R?,, (k) = O(q~*(m —n)™%) for anyk € [—m, 7].

As we shall show later we have that the matri@gsH*, H-, T, R! andR? represent
bounded operators froi?(N) to ¢2(N) for anyk € [—x, ]; so the sum (8) is well defined
and it represents a bounded operator fréf¢lN) to ¢2(N).

Because

supy IRy, < oo and supy IR} ,,| < o0 )
" meN m yeN
then it follows thatR?! defines a bounded operator frafh(N) to £1(N) (see theorem 2.13
in [M2]) as well as from¢>(N) to ¢>°(N) (see theorem 2.6 in [M2]). Hence, it defines a
bounded operator fror?(N) to £?(N) (see theorem 9, section 7.1 in [M1]). Because

= 2 2 < 1 N 1
2 IR, (K Z[szmﬁzmnzm—mﬁ]

n,m=1 m=n+1

for some positive constamt where

Z Z m Zz(n+1)zmz<°°

n=1m=n+1 n=1m=1
and
oo n—1
<0
22 2y S I P
n=1m= (n m) m=1n= m+1 (n m)

then it follows thatR? defines a bounded operator fraif(N) to ¢2(N); this is an immediate
consequence of the Schwarz inequality (see, e.g. remark 36, p 21, in [H]). The diagonal
matrix D represents a bounded operator fréAiN) to ¢2(N) because it differs fron%l,

where 1 is the unit matrix, up to a diagonal matrix having terms satisfying (9).
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The two matricedHt andH™ are of Hilbert type and so they define bounded operators
from £2(N) to ¢2(N) (see problem 38, p 23 of [H]).
The matrixT is a Toeplitz matrix given by

0 -2/ 0 2/3m 0 —2/51

-2/ 0 -2/ 0 2/3r 0
0 -2/ 0 -2/ 0 2/3n

T=| 2/37 0 —2/7 0 -2/ 0
0 2/3m 0 -2/ 0 -2/

—2/57 0 2/3r 0 —2/n 0

The Toeplitz matriXT = {t,—n}».men IS associated to the function
<I>(z)=thz-i zeC, |z]=1
JEZ
and the operator represented byand acting fron??(N) to ¢2(N) is bounded if the function

®(z) is essentially bounded on the complex circle of radius 1; in particular, we have that
(see corollary 3.2, Ch XXIIl in [GGK])

T =ess sup |®(@E?).
0€[0,2n)

In our case we have that

00 e _1\¢
o) =31 =3 5@ + ) = -3 Y cosi00 1+ 16] = —prot®)
= = T = 20+1

where p,,2(0) is the periodic step function which is equal to 1 {6t < /2, it is equal to

0 for6 = +x/2 and it is equal to-1 for || € (r/2, ]. Hence,T is a bounded operator.
Therefore, we can conclude thétis a bounded operator for artyand the constant

in the statement is independentiobecause all the asymptotic behaviours are uniform with

respect tok € B. O

We thank Professor Joachim Asch of the CPT-CNRS (Marseille) for pointing out the error.
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